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ABSTRACT 

 

Reinforced Concrete (RC) shear wall, is an effective primary earthquake resisting system due to 

strong stiffness and large shear-force resisting capacity. For a complex asymmetric wall, severe 

damage on a portion of the wall may directly affect the stiffness in other directions. Such a 

secondary damage mechanism is hard to capture. Hence, this study was devoted to determining a 

stiffness reduction index that can monitor current damage state of the wall system as a whole, 

and apply the unified damage index to decrease stiffness and strength on other directions. This 

study proposes an analytical framework at microscopic length scale that is based on a unit cell 

which consists of nonlinear steel spring, compression only gap, and concrete compression spring. 

For validation and applications, three U-shaped wall specimens available in literature (designed 

according to EC8) were modeled and simulated under cyclic lateral loading. These walls have 

the same dimensions and reinforcement except for the different loading directions. The present 

study concludes that the proposed unit cell model appears to be successful for predicting the 

stiffness reductions resulting from localized damages in different loading directions. The 

proposed unit cell-based framework seems to be a good starting point to consider secondary 

stiffness reductions for other complex non-rectangle walls such as L-, H- and T-shaped walls. 

This method may facilitate the fast determination of remaining stiffness of complex RC walls by 

using quick post-disaster observations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Reinforced Concrete Shear Walls 

Reinforced concrete (RC) shear walls are often used as the primary lateral load-resisting system 

in structures because of their significant in-plane stiffness, which enables them to resist lateral 

loads effectively while limiting lateral deformations. In many cases, shear walls with foundations 

of adequate strength to prevent overturning, may not practically be designed to respond 

elastically to design level ground shaking. In regions with a high seismic hazard, rectangular 

cross section walls are seldom used, if as an exception, walls with rectangular cross section are 

used they often need large reinforcement ratios. The importance of the ductility properties of the 

longitudinal reinforcement on the displacement capacity of the walls was for a long time 

undervalued and reinforcing steel was merely rated for its strength rather than its deformation 

capacity. As a consequence, a portion of the existing RC wall buildings was constructed with 

reinforcing steel possessing inferior ductility properties. Over the last decades, the seismic 

behavior of RC shear walls with rectangular cross section with varying parameters (ductility) has 

been the subject of extended research and several test series [e.g. Dazio et. al., 2009 [1]; Aaleti 

et. al., 2013 [14]; Salonikos et. al., 1996 [15] on such walls were conducted. From the results of 

these experimental data, the key parameters controlling the behavior of rectangular walls could 

be inferred. The results also proved that highly ductile walls need to be constructed in regions of 

high seismicity to attain higher capacity [1]. Because of its simple geometry rectangular walls 

behavior under biaxial and uniaxial loading is quite similar. 

Walls of complex geometry like (U-, T-, L-, or H- shaped sections) are also quite common in 

earthquake-resistant concrete buildings. Such non-rectangle walls are intended to provide 

stiffness and resistance in both horizontal directions, and their bi-directional behavior under 

seismic actions is more complex than that of rectangular walls. The behavior of non-rectangular 

walls under uniaxial and biaxial loading is not adequately known, as the quantity of 

observational and numerical studies are truly less. These non-rectangular walls were designed for 

medium ductility according to an older version. However, experimental study proves that high 

ductile reinforced concrete non-rectangular walls provide higher capacity [2]. 
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For shear walls, the effective action is shear and the ACI 318 method for shear walls is based on 

empirical expressions derived originally for beams by using test results usually exhibiting a 

broad scatter. The ACI provisions for the design of reinforced concrete squat walls are in 

disagreement with the observed structural behavior. While the codes suggest the shear resistance 

of the wall is due to the tensile strength of concrete, Lefas et. al., 1990 [31] has shown that the 

shear resistance of the wall is mainly due to the concrete compressive strength in the 

compression zone. He also proved that the web reinforcement does not have a significant effect 

on the shear force capacity.  

Hence, computational investigation of the dynamic behavior of RC shear walls is crucial for 

design purpose. The seismic performance assessment and loss computations of shear walls are 

done using fragility functions. Fragility functions relate the probability of exceeding one or more 

damage thresholds (described using damage states and repair measures) to a demand parameter 

such as story drift or component plastic deformation[34]. Damage states are characterized 

typically using descriptors such as crack width, the extent of concrete crushing, sliding shear 

displacement and reinforcement yielding and buckling. The fragility curves usually presented as 

a function of increasing drift, which is the best single story-level demand parameter for most 

structural elements such as walls. Drift is the demand parameter most reported in the literature. 

Four damage states and corresponding method of repairs have been defined based on the shear 

wall response to quasi-static loading [3]. Many analytical models have been proposed for the 

nonlinear dynamic analysis of structures. A review of existing analytical studies relevant to the 

nonlinear seismic response of RC shear walls is presented in the following. These models have 

proven to provide valuable understanding on the dynamic behavior of RC shear walls. Because 

several parameters in the model are assumed through personal testing, reliability might be 

limited[35]. Respecting a chronological order, lumped plasticity models are presented first, and 

distributed nonlinearity models follow[4]. 

1.2 Lumped Models: 

Under seismic excitation, the inelastic behavior of reinforced concrete frames often concentrates 

at the ends of beams and columns. Thus, a fresh approach to modeling this behavior was to use 

plastic hinges in the form of nonlinear springs located at the member ends. Several lumped 

plasticity constitutive models have been proposed to date[17,18,19,20,21,22]. Such models 
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include cyclic stiffness degradation in flexure and shear[4], pinching under reversal and fixed 

end rotations at the beam-column joint interface due to bar pull-out. Axial-flexural coupling is 

neglected. The advantage of lumped model is its simplicity that reduces storage requirements and 

computational costs and improves the numerical stability of the computations. Most lumped 

models, however, oversimplify certain important aspects of the hysteretic behavior of reinforced 

concrete members and are therefore limited in applicability. Parametric and theoretical studies of 

beams under monotonic loading demonstrate a strong dependence between model parameters 

and the imposed loading pattern and level of inelastic deformation. Neither of the factors is likely 

to remain constant during the dynamic response. The problem is further strengthened by the 

fluctuation of the axial force in the columns. Because of this history of dependence, damage 

predictions at the global, but especially at the local level, may be grossly inaccurate. 

1.2.1 Fiber Hinge Model: To overcome some of the limitations in lumped models Lai et. al 

[23]. proposed fiber hinge model that consists of a linear elastic element extending over the 

entire length of the reinforced concrete member and has one inelastic spring at each end. Each 

inelastic element is made up of one inelastic spring at each section corner that represents the 

longitudinal reinforcing steel and central concrete spring that is effective in compression only. 

The five spring discretization of the end sections is capable of simulating the axial force- biaxial 

bending moment interaction in reinforced concrete members in a more rational way that is 

possible by classical plasticity theory.  

1.3 Distributed Nonlinear Model:  

A more accurate description of the inelastic behavior of reinforced concrete members is possible 

with distributed nonlinearity models [21, 24, 25, 26, 27, 22, 28]. In contrast to the lumped model, 

material nonlinearity can take place at any element section, and the element behavior is derived 

by weighted integration of the section response. The constitutive behavior of the cross section is 

either formulated by classical plasticity theory regarding stress and strain resultants or is 

explicitly derived by discretization of the cross section of fibers. A common assumption is that 

plane section remains plane, such that the strains are linearly distributed over the cross section. 

Of the different models proposed by other authors [4] the most promising model is the fiber 

section model.  
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 1.3.1 Fiber Section Model: 

The most prominent model for the nonlinear analysis of reinforced concrete members presently 

the flexibility- based fiber section model. In this model, the RC structural member is divided into 

several longitudinal sections, and each section is comprised of several fibers as shown in 

Figure1. This model has been widely accepted to RC members whose failure is predominately 

controlled by flexure behavior. Each fiber has its uniaxial constitutive law and different fibers in 

the same section follow the assumption that ‘plane section remains plane.' 

It is important to note that brittle shear failure is considered in the proposed fiber- beam mode. 

When the internal shear force exceeds the prescribed shear strength of the fiber- beam element, 

the strength and the stiffness of the element abruptly falls to zero. The stress- strain model 

proposed by Legeron et.al, [29] is used in this study to model the backbone curve of concrete. 

The stress-strain model proposed by Esmaeily et. al. and Xiao et. al. [30] is adopted to model the 

backbone curve of steel. The model proposed by Legeron et.al. is taken to model the unloading 

and reloading paths. For complete formulation, refer to [4]. 

 

Figure 1: Rectangular Section divided into fibers. 

            

Figure 1.1: Steel and Concrete stress- strain plot associated to a fiber 

 

Reinforcing Steel 

Stress 
Stress 

Strain 

Strain 

Unconfined 

Confined 
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1.4 Multilayered Shell Element 

The Multi-layered shell model is based on the principles of composite material mechanics and is 

capable of simulating coupled in-plane/out-of-plane bending and in-plane direct shear and 

coupled bending-shear behavior of RC walls. [5] The multi-layered shell element is made up of a 

number of layers with different thickness and material properties (Figure 2). The rebar is 

smeared into one or more layers, and these rebar’s layer can either be isotropic or orthotropic 

depending on the reinforcement ratio in the longitudinal and transverse directions 

 

Figure 2:  FE Section of the wall modeled by Multilayered Shell Element 

 

The multi-layer shell formulation is based on the “ShellMITC4” element [6], which is a four-

node shell element builds on the theory of is a mixed interpolation of tensorial components. For 

complete formulation refer to [5, 6]. 

Drawback: In the multi-layered shell element as all the rebar properties are smeared into one 

layer; it cannot capture localized damages like bar buckling which are critical in understanding 

the collapse mechanism of the wall. These models are found to mesh sensitive[16] highly. 

Hence, it is required to fix the mesh size before moving ahead with the analysis.  

1.5 Virtual Earthquake Engineering Tool (VEEL):  

Based on the limitations described above, Cho et. al., embarked upon the development of a 

structure-independent parallel platform called Virtual Earthquake Engineering Tool (VEEL). 

This platform is imbued with a number of microphysical mechanisms. To fully retain the 

physical nature of real cracks, Cho adopted fixed type multi-directional smeared crack model, 



www.manaraa.com

6 
 

 
 

smart bar model to capture progressive bar buckling, confinement model to take into 

consideration the confinement effect. For in-depth information and formulation, please refer to 

Cho’s papers [5,6,7,8, 9, 10, 12]. The simulation of this platform is done using parallel 

computers and a novel algorithm developed by Cho termed as multilayered grouping parallel 

algorithm [5]. The walls are modeled using an automated meshing program developed by Cho 

[7]. For this study, VEEL platform is preferred for the simulation study as it is very easy to 

model complex U-shaped walls, assign concrete and steel properties with no artificial definition 

of core and cover concrete. 

1.6 Objective: 

The behavior of U-shaped walls subjected to uniaxial and biaxial cyclic loading is different 

compared to a rectangular wall. Because of it asymmetrical wall geometry, damage caused by 

one directional load may causes a significant stiffness reduction in other direction. An intense 

research was devoted to determining a stiffness reduction index that can monitor current damage 

state of the wall system as a whole, and apply the unified damage index to decrease stiffness and 

strength on other direction. 

This thesis proposes a new and efficient analytical framework that can swiftly predict the 

remaining stiffness in all directions after a localized damage took place by one directional 

loading at a portion of a U-shaped wall system. To meet this goal, this study proposes a 

microscopic unit cell that consists of nonlinear steel spring, compression-only gap, and concrete 

compression spring. For validation and application, this study presents in-depth modeling and 

analysis of U-shaped RC walls. Then validation is done by comparing the simulated results of X, 

Y and biaxial loading force displacement graphs with the experimental data. The level of damage 

with increasing drift ratio on YZ and XZ plane of Wall1 and Wall2 is determined by plotting the 

contor plots. Then specific formulation on the derivation of unified damage index for both 1D 

and 2D loading based on spring molecule model is presented. A parametric study of cell size and 

concrete stiffness reduction factor (d) is conducted, and an optimal setting was determined which 

matches with the experimental results. Finally, validating the numerical result with the 

experimental result is done, for the secondary stiffness.  
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CHAPTER 2 

FINITE ELEMENT MODELLING AND SIMULATION RESULTS 

2.1 Test Specimen 

A total of three U-shaped wall specimens were modeled and simulated under cyclic lateral 

loading. All the three walls have the same dimensions and reinforcement, but the direction of 

loading is different in each case. The test specimens have been designed according to EC8 code. 

Geometrical details of the U-Shaped Wall [13] are given in Table 1. 

Table 1: Geometric details of U- Shaped Wall 

Description Dimensions(mm) 

Flanges Length 1250 

Flange Thickness 250 

Web Length 1500 

Web Thickness 250 

Height 3600 

Concrete cover 25 

 

The configuration and arrangement of the reinforcement are shown in Figure 3. 

 

Figure 3: Section details of wall test specimen 
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Reinforcement details: 10mm and 12mm diameter bars with an overall steel ratio (ρ) = 0.0056 

over the section were used as vertical rebar in the boundary and web portion of the walls. 

Horizontal steel reinforcement: two curtains of 8mm diameter bars at 125mm spacing center to 

center in the flanges and at 75mm spacing center to center in the web. Confinement 

reinforcement: 8mm diameter bars at 90mm center to center spacing were used as horizontal 

reinforcement. [13] 

2.2 Modelling and Meshing  

The finite element model of the U-shaped wall is done using General Auto Meshing 

Preprocessor Tool, developed by Cho [7]. Figures 2a & 2b, convey the geometry and actual 

reinforcement layout of the U-shaped wall under consideration. The concrete part is modeled by 

hexahedral solid elements while the entire reinforcing bar system (i.e. vertical, horizontal and 

confinement reinforcement) is explicitly modeled by space trusses. Importantly the pre-

processing tool includes the data input task (like the material and hysteresis properties, loading 

history, nodal force, and nodal reference force) with the aid of an automated meshing program 

developed by Cho [8] 

   

Figure 4: Mesh of reinforcement bars of the U- Shaped Wall 

Each wall (i.e. Wall1, Wall2, and Wall3) was modeled with 218214 solid elements and 193200 

truss elements. 
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2.3 Material and Hysteresis Properties 

After generating the input file, we need to input the material and hysteresis properties for 

concrete and all the steel bars of the U-shaped wall referring to [13] 

Concrete Properties: Based on modified thorenfeldt concrete model with non-local-information-

based confinement model. This choice has been made because the model is believed to be one of 

the most balanced models with sufficient accuracy and efficiency for concrete, covering a broad 

range of strengths [12]. The properties inputted for concrete are summarized in Table 2. 

Table 2: Concrete properties for the test specimen from [13] 

Modulus of Elasticity (Ec) 28.0GPa 

Poison’s Ratio 0.2 

Density 2286.0 kg/m^3 

Thermal Coefficient 0.23 

Compressive Strength (fc) 23.73 MPa 

Compressive Strain (εc) -0.002 

 

Rebar Properties:  All the vertical reinforcement (i.e. Φ12mm and Φ10mm bars) were based 

Menegotto-Pinto steel model with compressive buckling Cho [8]. All the horizontal 

reinforcement and stirrups (i.e. Φ8mm bars) were based on bilinear steel model. The properties 

entered for the rebar are summarized in Table 3. 

Table 3: Steel rebar properties referring to [13]    

Description Φ12mm Φ10mm Φ8mm 

Area 113.097x10-6 m2 78.5398 x10-6 m2 50.2655 x10-6 m2 

Yield Stress (σy) 516 MPa 525 MPa 557 MPa 

Yield Strain (εy) 0.002 0.002 0.002 

Reduction factor(b) 0.00156 0.00146 0.00123 

Ultimate stress (σu) 615 MPa 617 MPa 642 MPa 
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2.4 Loading Conditions 

The three specimens (i.e. Wall1, Wall2, and Wall3) having the same geometry, reinforcement, 

and material properties were subjected to three cyclic tests: a uniaxial cyclic test in the Y 

direction, a uniaxial cyclic test in the X direction and a biaxial cyclic test in the XY direction. 

The lateral loading point for all the three walls is at 3.9m from the ground level. A vertical axial 

load of 2 MN was applied for all the three walls. Hence, the axial force ratio is equal to 0.0963. 

The loading history for each case is shown in [Figures 5,6,7,8] 

Wall1 – Loaded in the Y direction (as per VEEL coordinate system) 

 

Figure 5: Horizontal displacement vs. time history- Y direction 

Wall2- Loaded in the X direction (as per VEEL coordinate system) 

 

Figure 6: Horizontal displacement vs. time history – X direction. 
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Wall3- biaxial cyclic loading in both XY Direction 

 

Figure 7: Average horizontal displacements time histories: XY biaxial test 

 

 

Figure 8: Y top displacement vs X top displacement: XY biaxial test. 
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2.5 Validating simulation result with experimental result 

Simulation of the three walls was performed on High-Performance Computer (HPC) condo 

cluster provided by Iowa State Research IT group. The HPC Condo cluster is composed of 144 

computer nodes, in addition to the head node, data transfer node, a large memory node, and a 

large memory node. Each of the nodes is connected via Intel QDR InfiniBand (40Mbps) switch, 

and run Red Hat Enterprise Linux 6 [33]. The simulation was on six nodes, and each node 

consists of 16 processors, therefore making total CPU’s equals 96. The total number of 

displacement time steps to obtain the nonlinear response of the walls was set to 268, 440 and 177 

for Wall1, Wall2, and Wall3 respectively. 

After complete simulation, using a postprocessor developed by Cho [8]. The force vs. 

displacement response was obtained for each of the three cases and compared with the 

experimental results [13].     

Case 1: Wall1 - (Y-Direction Loading) 

              

Figure: 9 (a): simulation result- VEEL     Figure 9(b): Experimental Result      

Source: N. ILE [13] 
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From Figures 9(a) and 9(b), we see that the overall shape and range of the simulated force-

displacement (FD) hysteresis loop coincides well with the experimental result when the wall is 

subjected in  Y- direction loading. Experimentally the first cracking was observed at about 1cm 

displacement during the first loading cycle. At 8cm displacement, some buckling occurred.The 

U-shaped wall failure, occurred when three vertical bars on the flange side broke while 

straightening back up after buckling in compression. The resulting displacement ductility factor 

was found to be of approximately 6. One of the differences in the experimental and simulation 

results is that there is no stiffness degradation in VEEL result compared to the experimental 

result. One plausible cause for this differences is that the VEEL assumes a perfect bond between 

concrete and steel which may not be the case in the experimental setup. Other than this issue, we 

can conclude that VEEL is a useful tool for predicting the cyclic behavior of non-rectangular 

shear walls. 

Case 2: Wall2 -(X-Direction Loading) 

        

     Figure 10 (a): Simulation Result    Figure 10(b): Experimental Result 

         Source: N. ILE [ 13] 

From Figures 10(a) and 10(b), we see that the overall shape of the simulated force-displacement 

graph coincides well with the experimental result when the wall is subjected to  X- direction 

loading.  The ranges both force as well as displacement match reasonable well. Experimentally, 

the first inclined cracking at the base of the flanges was observed at about 2cm displacement 

during the first loading cycle. The specimen failed in the X positive direction of loading, by the 
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bars buckling on the corner. of the U-shaped wall web. The resulting displacement ductility 

factor is found to be approximately 6cm. The only difference that can be observed is the stiffness 

degradation in the experimental result which couldn’t be predicted in VEEL because of the 

assumption of the perfect bond between steel and concrete. Hence, further development is 

required in the VEEL platform, considering the bond slip so that the simulation result exactly 

matches with the experimental result.  

3. Wall3- (XY Loading) 

along Y Direction 

       

Fig: 11(a): Simulation Result     Fig  11(b): Experimental Result 

        Source: N.ILE [13] 

along X Direction 

                

Fig 12(a): Simulation Result     Fig 12(b): Experimental Result. 

                    Source: N.ILE [13] 
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Wall3 has been subjected to biaxial loading the FD graphs on each direction were plotted 

separately and compared to the experimental results. Exprimentally, The U-shaped wall failure, 

in both directions oocured at the apex of the large magnitude of the last fly (for a displacement 

value of 8cm in the X direction and -8cm in the Y direction), when three vertical bars broke 

straightening back up after buckling in compression. Then one flange failed in shear and a 

relative displacement of the top of the flange with respect to the bottom was observed. Based on 

a maximum displacement of 8cm and a yield displacement of about 1.3cm the available 

displacement ductility factor is approximately 6cm in both directions. From Figures 11(a)(b) and 

12(a)(b), we see that there is a decrease in the capacity of the wall when it is subjected to 

bidirectional loading compared to unidirectional loading. This shows that due to the complex 

geometry of U-shape walls. There’s a decrease in its capacity when subjected to bi-directional 

loading. 
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CHAPTER 3 

OBSERVATIONS AND DAMAGE STATE DETERMINATION. 

After the reasonable validation between the simulated and experimental FD graphs for all the 

three walls from the previous chapter, we can conclude that VEEL is a valuable tool for 

understanding the seismic behavior of nonrectangular walls. To determine the level of damage 

with increasing peak drift value of the wall, contor plots (strain distribution plot) of YZ (web) 

and XZ (flanges) planes for Wall1 and Wall 2 were plotted. To systematically monitor the wall 

failure, we define two metrics 1) An area ratio of the wall surface that yielded (denoted as α). 2) 

An area ratio of the wall surface that undergoes crushing (denoted as β) to the entire wall area. 

α: fraction of the wall surface which has undergone yielding, i.e. the ratio between the area of the 

surface where the strain value (ε) exceeds 0.002 in the contor plot to the total area of the wall 

surface. 

β: fraction of the wall surface which has undergone crushing, i.e. the ratio between the area of 

the surface where the strain value (ε) is less than -0.002 in the contor plot to the total area of the 

wall surface.  

We observed that rectangular surfaces of the U-shape wall could undergo by three types of 

damage patterns, which depends on the direction of loading 

Type 1: When α fraction of the wall has yielded, as shown in Figure 13. 

 

Figure 13: Contor plots- XZ plane of Wall1 at 2.05% drift ratio 
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 Figure 13 contor plot is the XZ plane of Wall1 (i.e. loaded in the Y direction) at a positive peak 

displacement of 8cm at 60th-time step out of the 277-time steps. 

Similarly for Wall2, the contor plot is the YZ plane of Wall2 (i.e. loaded in the X direction) at a 

positive peak displacement of 8cm at a time step of 153 out of the 220-time steps as shown in 

Figure 14. 

Figure 14: Contor plot- YZ plane of Wall2 at a drift of 2.05% 

Type 2: When β fraction of the wall has crushed as shown in Figure 15. 

 

Figure 15: Contor Plot- XZ plane of Wall1 at a drift of 2.05% 

Figure 15, contor plot is of XZ plane from Wall1 at a negative peak displacement of 4 cm and a 

time step of 48 out of the 268-time step. 
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Figure 16: Contor plot – YZ plane of Wall2  

Figure 16, contor plots is of YZ plane from Wall2 at a negative peak displacement of 4 cm and a 

time step of 81 out of the 220 time steps. 

Type 3: When both α and β fraction of the surface has yielded and crushed 

 

Figure 17: Contor plot- YZ plane of Wall1 at a drift equal to 2.05% 

Figure 17, contor plot is of YZ plane from Wall1 at a positive peak displacement of 4cm and a 

time step equal to 40 out of the 268 whole time step. 
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Figure 18: Contor plot- XZ plane of Wall2 at a drift equal to 1.03% 

Figure 18, contor plot is of XZ plane of Wall2 at a positive peak displacement of 4 cm and a time 

step of 97 out of the 220-time steps. 

Such contor plots have been plotted at every maximum peak displacement value (both in positive 

and negative direction) and variation of α and β is determined at every drift value for both XZ 

and YZ plane of Wall1 and Wall2. 

1. Wall1 

XZ plane: We observe only Type 1 and Type 2 damages to this surface, and the variation of α 

and β vs. drift ratio is shown in Figure 19: 

 

Figure 19: Variation of damage area with drift ratio for YZ plane – Wall1 
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YZ plane: We observe mostly Type 3 damage to the surface and the variation of α and β with 

drift ratio is shown in Figure 20(a) when the wall is under tension. We also determine the 

damage length and its variation with drift is shown in figure 20(b) 

    

Figure 20 (a): Damage area vs. drift for YZ plane- Wall1 Figure 20 (b): Damage length for YZ plane- 

Wall1 

Variation of damage area and length with drift ratio are shown in Figures 21, 22. When the wall 

is under Compression. 

     

 Figure 21: Damage area vs. Drift for YZ plane- Wall1    Figure 22:  Damage length vs Drift for YZ plane 
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2. Wall2 

XZ plane: We observe more Type 3 damage on the surface. The variation of α and β with drift 

are calculated and plotted in Figure 23(a) and 23(b). 

     

Figure 23(a): Damage area vs. drift for XZ plane            Figure 23(b): Damage length vs. drift for XZ 

Variation of damage area and length with increase in drift, when wall is under compression 

     

Figure 24: Damage area and length vs. drift ratio of Wall2-XZpalne under compression 

YZ plane: We observe mostly Type 1 or Type 2 damage on this surface and the variation of α 

and β is shown in Figure 25. 

 

Figure 25: Variation of Damage Area with Drift Ratio for XZ plane 



www.manaraa.com

22 
 

 
 

CHAPTER 4 

FORMULATION OF STIFFNESS REDUCTION FACTOR. 

4.1 Derivation of Stiffness reduction factor based on spring molecule 

4.1.1 Formulation for Uni-directional loading. 

In the spring molecule formulation, the entire wall surface is divided into m×n unit cells. Each 

unit cell comprises a nonlinear steel spring and a nonlinear compressive concrete spring with a 

compression-only gap (as shown in the figure 26). Initial stiffness for steel spring and concrete 

spring are Ks and Kc respectively, and they are connected in parallel, and the total initial stiffness 

is denoted as KT. 

        

Figure 26: An mxn cell classification of the wall surface and a single spring molecule 

Case 1: Total initial stiffness (𝐾𝑜) of the wall is determined as follows:  

KT= Ks+Kcδgap(ε) 

where 𝐾𝑠 =  
𝜎𝑦

𝜀𝑠
  , 𝜎𝑦 is the yield strength of boundary element vertical rebar inferred from [13] 

and 𝜀𝑠 is the yield strain of the rebar which is equal to 0.002 

 𝐾𝑐 =
𝜎𝑐

𝜀𝑐
 , 𝜎𝑐 is the compressive strength of concrete inferred from [13] and 𝜀𝑐 is the compressive 

strain which is equal to -0.002 from figure 8(a); δgap(ε) is 1 when total strain of the cell ε < 0 

while 0 when ε ≥0. Thus, when the unit cell is under tension, KT= Ks whereas under 

compression KT= Ks+Kc . If we consider one vertical row of unit cells (i.e. vertical chain of the n 

cells) there are n cells that are connected in series, hence for n springs in series, the effective 

Eq. 1 
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stiffness is equal to 𝐾𝑒𝑓𝑓 =  
𝐾𝑇

𝑛
 . Also, there are m columns of such cell chains in parallel (Fig. 

26), and, thus the total initial stiffness is given by 

𝐾𝑜 =  
𝑚

𝑛
×𝐾𝑇 

4.1.2 Spring Molecule Constitutive Models: The nonlinear behavior of the proposed spring 

molecule model derives entirely from the nonlinear behavior of the unit cells[4]. Thus the 

validity of the analytical results depends on the accuracy of the cell material models. Since the 

present study is focusing on the stiffness reduction of nonrectangular shear walls and the effect 

of bond-slip is neglected, only two material models are required, i.e., one for concrete and the 

other one for reinforcing steel.  

4.1.2 (a): Steel stress- strain relation: The spring molecule model uses the bilinear model for 

reinforcing steel as described by Menegotto and Pinto [4]. The monotonic envelope curve of 

steel in compression and tension is shown in Figure 27. 

 

Figure 27: Bilinear model of reinforcing steel in spring molecule model 

Where b is the steel stiffness reduction factor, and it is determined as the ratio between E1 and 

EO. EO is the initial stiffness and E1 is the slope of the line after yielding takes place, and 

throughout the present study b value is assumed to be 0.00156.  

4.1.2 (b): Concrete stress strain relation: The monotonic envelope curve in compression 

follows the model of Kent and Park (1973) [4] that was later extended by Scott et. al (1982) [4]. 

Even though more accurate and complete models have been published since the so-called 

Eq. 2 
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modified Kent and Park model offers a good balance between simplicity[4] and accuracy. For 

confined concrete equations used are as follows [4]. The monotonic envelope curve is shown in 

figure 28. 

 

𝜀𝑐 ≤ 0.002𝐾 ;  𝜎𝑐 =  𝐾×𝑓𝑐
′× [ 

2𝜀𝑐

0.002𝐾
− (

𝜀𝑐

0.002𝐾
)

2

]   

And when   𝜀𝑐 > 0.002𝐾 ;   𝜎𝑐 = 𝐾× 𝑓𝑐
′ ×[1 − 𝑍(𝜀𝑐 − 0.002𝐾)]   

Where    Z = 0.5

(
3+0.29𝑓𝑐

′

145𝑓𝑐
′−1000

+
3

4
𝜌𝑠√

ℎ′

𝑠ℎ
− 0.002𝐾)⁄

 

𝜌𝑠 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆𝑡𝑖𝑟𝑟𝑢𝑝

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
    

     K = 1+ 
𝜌𝑠×𝑓𝑦ℎ

𝑓𝑐
′⁄       

fya - The yield strength of the stirrup.  

fc
′ - The compressive strength of cylindrical concrete test specimen 

 

Figure 28: Monotonic envelope curve for concrete based on Kent and Park Model 
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Using the above equations, d – The stiffness reduction factor for concrete in compression is 

computed to be equal to -0.109322 

Case2: Stiffness of wall when α fraction of the wall has horizontally yielded. 

Figure 29: Type 1 damage state 

All the cells which have undergone yielding will have a stiffness (KTy) which is determined as 

follows: As concrete is assumed to have no tensile stiffness, the Kc values be equal to zero under 

tension. Once nonlinearity starts the steel stiffness reduces from Ks to b*Ks. Therefore, the new 

stiffness of those cells which have yielded comes out to be 

𝐾𝑇𝑦 = 𝑏×𝐾𝑠 

 So, if α fraction of the n cells has yielded in a row of cell. Then we have n×α cells with a 

stiffness equal to 𝐾𝑇𝑦 and (n- n×α) cells with stiffness equal to KT. We can determine the 

stiffness for a single series as 

1

𝐾
=  

𝑛𝛼

𝐾𝑇𝑦
+

𝑛 −  𝑛𝛼

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾 =  (
1

𝑛
)

𝐾𝑇𝑦×𝐾𝑇

𝛼𝐾𝑇 + (1 − 𝛼)𝐾𝑇𝑦
 

Eq. 3 
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As there are m such rows of cells in parallel, the new stiffness of the wall after α fraction of it 

has yielded is given by                                               

𝐾 =
𝑚

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼𝐾𝑇 + (1 −  𝛼)𝐾𝑇𝑦
) 

Case 3: when β fraction of the wall has undergone crushing 

Figure 30: Type 2 damage state 

All the cells which have undergone crushing will have a stiffness KTC which is defined as 

follows. From the monotonic envelope curve for concrete model based on Kent and Park model, 

concrete stiffness reduced from KC to d× KC and the steel stiffness reduces from Ks to b×Ks. 

Therefore, the new stiffness of those cells which have crushed becomes 

𝐾𝑇𝑐 = 𝑏×𝐾𝑠 +  𝑑×𝐾𝑐 

So, if β fraction of the n cells has undergone concrete crushing. Then we have 

n×β cells with stiffness equal to𝐾𝑇𝑐, and (n- n×β) cells with stiffness equal to KT. We can 

determine the stiffness for a single series as  

1

𝐾
=  

𝑛 𝛽 

𝐾𝑇𝑐
+

𝑛 −  𝑛 𝛽 

𝐾𝑇
 

Simplifying the above equation by we get  

𝐾 =  (
1

𝑛
)

𝐾𝑇𝐶×𝐾𝑇

 𝛽 𝐾𝑇 + (1 −  𝛽 )𝐾𝑇𝐶
 

As there are m rows of cells in parallel, the new stiffness of the wall after β fraction of horizontal 

wall has crushed is given by                                               

Eq. 4 

Eq. 5 



www.manaraa.com

27 
 

 
 

𝐾 =
𝑚

𝑛
× (

𝐾𝑇𝐶×𝐾𝑇

  𝛽 𝐾𝑇 + (1 −   𝛽 )𝐾𝑇𝐶
) 

Case 4: When α fraction of wall surface has yielded and simultaneously β fraction of the wall 

has undergone concrete crushing, as shown in Figure 31 

 

Figure 31: Type 3 damage state 

 

Figure 32: Dividing wall into parts for determining stiffness in case 4. P1 denoted Part 1. 

Eq. 6 
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To determine the stiffness in such a case, we first divide the wall into four sections as shown in 

Figure 32. We can collect the lengths (mα and mβ) of damaged walls. The damage lengths may 

come from on-site observation or from the contour plots of simulation results. With increasing 

peak displacements, we can obtain varying damage lengths. It should be noted that in the above 

figure y and z are the number of cells in the vertical direction, whereas mα and mβ are the lengths 

of yielding and crushing zones of the wall. 

Let us consider Part 2 and Part 3 first, from the figure above we can say that none of the cells in 

the vertical direction have yielded nor crushed. Hence their stiffness is equal to KT. There are n 

cells with stiffness KT connected in series. Hence the stiffness for a single vertical series in that 

region is equal to
𝐾𝑇

𝑛
. For Part 2, number of effective springs connected in parallel are (m/2 – mα). 

Therefore, the total stiffness (KP2) for Part 2 is given by 

                                      

𝐾𝑃2 =

𝑚
2 − 𝑚𝛼

𝑛
×𝐾𝑇 

Similarly, for Part 3 we can find the stiffness to be equal to 

                                      

𝐾𝑃3 =

𝑚
2 − 𝑚𝛽

𝑛
×𝐾𝑇  

Part 1: 

By recalling that α is the area ratio of the yielded zone to the entire wall, we can consider area 

equality of the yielded triangle as  
1

2
×𝑚𝛼×𝑦 =  𝛼×𝑚×𝑛. From this, we can determine the only 

unknown quantity 

𝑦 =  
2𝛼𝑚𝑛

𝑚𝛼
 

We observe that the y value (i.e. number of vertical unit cells that are yielding) keeps decreasing 

as we move from left to right. Hence y value in terms of x can be written as follows                                                           

𝑦(𝑥) =  
2𝛼𝑚𝑛

𝑚𝛼
2

(𝑚𝛼 − 𝑥) 

where the number of horizontal cells, 𝑥 ranges from 0 to mα. In a vertical row of unit cells, y (𝑥) 

Eq. 7 

Eq. 8 
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cells will have a stiffness equal to KTy and (n-y(x)) cells have a stiffness equal to KT. Hence the 

stiffness for a single series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑦
+

𝑛 − 𝑦(𝑥)

𝐾𝑇
 

By simplifying the above equation, we get                                        

𝐾 =  
𝐾𝑇×𝐾𝑇𝑦

(𝑛 − 𝑦(𝑥))𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇
 

However, we know that y is a function of x. Hence the total stiffness of part 1 is given by 

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑚𝛼

𝑥=0

 

                          

Similarly, for Part 4, same procedure can be followed as Part 1 and we can determine the total 

stiffness as 

𝐾𝑃4 =  ∑
𝐾𝑇×𝐾𝑇𝐶

[𝑛 − 𝑍(𝑝)]𝐾𝑇𝐶 + 𝑍(𝑝)𝐾𝑇

𝑝=𝑚𝛽

𝑝=0

 

 

where, 𝑍(𝑝) =  
2𝛽𝑚𝑛

𝑚𝛽
2 (𝑚𝛽 − 𝑝) where p is the horizontal coordinate (measured from the right 

corner) meaning the counts of horizontal cells. 

Therefore, the total stiffness (K) is given by 

K = Kp1+ Kp2 + Kp3 + Kp4  

4.2 Formulation for bi-directional loading. 

In the bi-directional loading case, the wall has been displaced to the maximum point in one 

direction, and then it is loaded in the other direction (e.g. loaded in X direction and then Y-

direction). Hence the damage patterns on the web and flange of the wall are complex. These 

complex damage patterns can be divided into several cases based on a number of assumptions in 

this study. Then an analytical stiffness reduction formula is derived for each case. 

 

Eq. 10

 
 

Eq. 4 

Eq. 11 

Eq. 9

 
 

Eq. 4 
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4.2.1 Damage patterns observed on the web portion of the wall due to bi-directional loading. 

Suppose, a wall is initially loaded in the X direction (i.e., parallel to two flanges). Hence we 

observe Type1 or Type 2 damage pattern on the web surface. Once, the direction of the loading 

is changed to the Y direction we start observing Type3 damage pattern over the current damaged 

surface as shown in figure 33 and figure 37 

4.2.1(a) Stiffness reduction formulae when Type 1 damage is observed due to X direction 

loading 

 

Figure 33: All possible damage patterns on the web surface of the wall by changing the direction of 

loading. X-direction loading causes α1, which is followed by α2 and β from Y- direction loading 

a) Case 1: when hα1 < hα2 and hα1 < hβ 

 

Figure 34: Case 1 when hα1 < hα2 and hα1 < hβ  
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The stiffness (K) for such a wall surface is determined by dividing the wall surface into five parts 

as shown in figure 34. The total stiffness of the wall surface would be the sum of all the parts. 

For simplicity, we assumed a 45o angle damage for damage α2 and β. 

                    

Figure 34 (a): Part 1     Figure 34(b): Part 4       Figure 34(c): Part5        

For Part 1:  

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑧1

𝑥=0

 

where z1 = √2×𝛼2×𝑚×𝑛 − (𝑛×𝛼1) and  𝑦(𝑥) =  √2×𝛼2×𝑚×𝑛 − 𝑥 

 

For Part2:  

𝐾𝑃2 =
√2×𝛼2×𝑚×𝑛 − 𝑧1

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼1𝐾𝑇 + (1 −  𝛼1)𝐾𝑇𝑦
) 

For Part3: 

𝐾𝑃3 =
𝑚 − √2×𝛼2×𝑚×𝑛 − √2×𝛽×𝑚×𝑛

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼1𝐾𝑇 + (1 −  𝛼1)𝐾𝑇𝑦
) 

For Part4:  

As you can see from Figures 34 and 34 (b), the y value keeps decreasing as we move from right 

to left. Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛼1 − 𝑥 

Eq. 14 

Eq. 13 

Eq. 12 
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where the number of horizontal cells, x ranges from 0 to √2×𝛽×𝑚×𝑛 − 𝑧2 . In a vertical row of 

unit cells, y (𝑥) cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α1 – y (𝑥) ) cells will have a 

stiffness equal to 𝐾𝑇𝑦 and (n- n×α1) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a 

single series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼1 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼1

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃4 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼1 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼1)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=√2×𝛽×𝑚×𝑛−𝑧2

𝑥=0

 

 

where z2 = √2×𝛽×𝑚×𝑛 − (𝑛×𝛼1) and  𝑦(𝑥) =  𝑛×𝛼1 − 𝑥 

 

For Part5: 

𝐾𝑃5 = ∑
𝐾𝑇×𝐾𝑇𝑐

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑧2

𝑥=0

 

where z2 = √2×𝛽×𝑚×𝑛 − (𝑛×𝛼1) and 𝑦(𝑥) = √2×𝛽×𝑚×𝑛 − 𝑥  

 

Therefore, the overall stiffness of the wall surface 

 K = KP1 + KP2 + KP3 + KP4 + KP5 

Case 2: when hα1 = hα2 and hα1 = hβ 

 

Figure 35: when hα1 = hα2 and hα1 = hβ 

  Eq. 16 

Eq. 15 

Eq. 17 
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As you can see from the figure 35, we divide the wall into two parts. The overall stiffness of the 

wall is the summation of the two parts. Note we have assumed a 45o angle damage for β 

For Part 1 

𝐾𝑃1 =
𝑚 − √2×𝛽×𝑚×𝑛

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼1𝐾𝑇 + (1 −  𝛼1)𝐾𝑇𝑦
) 

For Part 2 

As you can see from Figures 35, the y value keeps decreasing as we move from right to left. 

Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛼1 − 𝑥 

where the number of horizontal cells, x ranges from 0 to √2×𝛽×𝑚×𝑛 . In a vertical row of unit 

cells, y (𝑥) cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α1 – y (𝑥) ) cells will have a stiffness 

equal to 𝐾𝑇𝑦 and (n- n×α1) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single 

series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼1 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼1

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃2 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼1 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼1)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=√2×𝛽×𝑚×𝑛

𝑥=0

 

The overall stiffness of the wall is given by K = KP1 + KP2 

 

 

 

 

 

 

 

 

 

Eq. 18 

Eq. 19 

Eq. 20 
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Case 3: when hα1 > hα2 and hα1 > hβ1 

 

Figure 36: Case 3: hα1 > hα2 and hα1 > hβ 

As you can see from the figure 36, we divide the wall into two parts. The overall stiffness of the 

wall is the summation of the two parts. Note we have assumed a 45o angle damage for α2 and β 

Part 1: 

𝐾𝑃1 =
𝑚 − √2×𝛽×𝑚×𝑛

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼1𝐾𝑇 + (1 − 𝛼1)𝐾𝑇𝑦
) 

For Part 2 

As you can see from Figures 36, the y value keeps decreasing as we move from right to left. 

Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  √2×𝛽×𝑚×𝑛 − 𝑥 

where the number of horizontal cells, x ranges from 0 to √2×𝛽×𝑚×𝑛 . In a vertical row of unit 

cells, y (𝑥) cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α1 – y (𝑥) ) cells will have a stiffness 

equal to 𝐾𝑇𝑦 and (n- n×α1) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single 

series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼1 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼1

𝐾𝑇
 

Eq. 21 
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By simplifying the above equation, we get  

𝐾𝑃2 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼1 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼1)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=√2×𝛽×𝑚×𝑛

𝑥=0

 

 

 

The overall stiffness of the wall is given by K = KP1 + KP2  

4.2.1 (b) Stiffness reduction formulae when Type 2 damage is observed due to X direction 

loading 

 

Figure 37: All possible damage patterns on the web surface of the wall by changing the direction of 

loading. X-direction loading causes β1, which is followed by α and β1 from Y- direction loading 

a) Case 1: when hβ1 < hβ2 and hβ1 < hα 

 

Figure 38: Case 1 when hβ1 < hβ2 and hβ1 < hα  

Eq. 22 

Eq. 23 
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The stiffness (K) for such a wall surface is determined by dividing the wall surface into five parts 

as shown in figure 34. The total stiffness of the wall surface would be the sum of all the parts. 

For simplicity, we assumed a 45o angle damage for damage α and β2.  

                   

Figure 38 (a): Part 1     Figure 38(b): Part 2        Figure 38(c): Part5        

For Part 1:  

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑧1

𝑥=0

 

Where z1 = √2×𝛼×𝑚×𝑛 − (𝑛×𝛽1) and  𝑦(𝑥) =  √2×𝛼×𝑚×𝑛 − 𝑥 

 

For Part2:  

As you can see from Figure 38 and 38(b), the y value keeps decreasing as we move from left to 

right. Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛽1 − 𝑥 

where the number of horizontal cells, x ranges from 0 to √2×𝛼×𝑚×𝑛 − 𝑧1. In a vertical row of 

unit cells, y(x) cells will have a stiffness equal to 𝐾𝑇𝑦 and 𝑛×𝛽1 − 𝑦(𝑥) cells will have a 

stiffness equal to 𝐾𝑇𝑐 and (n- n×𝛽1) cells will have a stiffness equal to 𝐾𝑇. Hence the stiffness 

for a single series of cells can be determined as 

β
2
 

P5 

z
2
 

x  
z

2
 

Eq. 24 
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1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑦
+

𝑛×𝛽1 − 𝑦(𝑥)

𝐾𝑇𝑐
+  

𝑛 − 𝑛×𝛽1

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃2 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛽1 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑐 + (𝑛 − 𝑛×𝛽1)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=√2×𝛼×𝑚×𝑛−𝑧1

𝑥=0

 

Where z1 = √2×𝛼×𝑚×𝑛 − (𝑛×𝛽1) and  𝑦(𝑥) =  𝑛×𝛽1 − 𝑥 

 

For Part3: 

𝐾𝑃3 =
𝑚 − √2×𝛽2×𝑚×𝑛 − √2×𝛼×𝑚×𝑛

𝑛
× (

𝐾𝑇𝑐×𝐾𝑇

 𝛽1𝐾𝑇 + (1 −  𝛽1)𝐾𝑇𝑐
) 

For Part4: 

𝐾𝑃4 =
√2×𝛽2×𝑚×𝑛 − 𝑧2

𝑛
× (

𝐾𝑇𝑐×𝐾𝑇

 𝛽1𝐾𝑇 + (1 − 𝛽1)𝐾𝑇𝑐
) 

where z2 =√2×𝛽2×𝑚×𝑛 − (𝑛×𝛽1). 

 

For Part5: 

𝐾𝑃5 = ∑
𝐾𝑇×𝐾𝑇𝑐

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑧2

𝑥=0

 

Where z2 = √2×𝛽2×𝑚×𝑛 − (𝑛×𝛽1) and 𝑦(𝑥) = √2×𝛽2×𝑚×𝑛 − 𝑥  

 

Therefore, the overall stiffness of the wall surface 

 

 K = KP1 + KP2 + KP3 + KP4 + KP5 

 

 

 

 

Eq. 25 

Eq. 26 

Eq. 27 

Eq. 28 

Eq. 29 
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Case 2: when h β1 = h β2 and hα = h β1 

 

Figure 39: when h β 1 = h β 2 and hα= h β 1  

As you can see from the figure 39, we divide the wall into two parts. The overall stiffness of the 

wall is the summation of the two parts. Note we have assumed a 45o angle damage for α and β2 

For Part 1 

As you can see from Figure 39, the y value keeps decreasing as we move from left to right. 

Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛽1 − 𝑥 

where the number of horizontal cells, x ranges from 0 to √2×𝛼×𝑚×𝑛. In a vertical row of unit 

cells, y(x) cells will have a stiffness equal to 𝐾𝑇𝑦 and 𝑛×𝛽1 − 𝑦(𝑥) cells will have a stiffness 

equal to 𝐾𝑇𝑐 and (n- n×𝛽1) cells will have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single 

series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑦
+

𝑛×𝛽1 − 𝑦(𝑥)

𝐾𝑇𝑐
+  

𝑛 − 𝑛×𝛽1

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃2 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛽1 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑐 + (𝑛 − 𝑛×𝛽1)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=√2×𝛼×𝑚×𝑛

𝑥=0

 

 

 

Eq. 30 
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For Part 2: 

𝐾𝑃3 =
𝑚 − √2×𝛼×𝑚×𝑛

𝑛
× (

𝐾𝑇𝑐×𝐾𝑇

 𝛽1𝐾𝑇 + (1 − 𝛽1)𝐾𝑇𝑐
) 

 

The overall stiffness of the wall given by K = KP1 + KP2  

 

Case 3: when hβ1 > hβ2 and hβ1 > hα 

Figure 40: Case 3: hβ1 > hβ2 and hβ1 > hα 

As you can see from the figure 40, we divide the wall into two parts. The overall stiffness of the 

wall is the summation of the two parts. Note we have assumed a 45o angle damage for α and β2 

For Part 1: 

As you can see from Figure 40, the y value keeps decreasing as we move from left to right. 

Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛽1 − 𝑥 

where the number of horizontal cells, x ranges from 0 to √2×𝛼×𝑚×𝑛. In a vertical row of unit 

cells, y(x) cells will have a stiffness equal to 𝐾𝑇𝑦 and 𝑛×𝛽1 − 𝑦(𝑥) cells will have a stiffness 

equal to 𝐾𝑇𝑐 and (n- n×𝛽1) cells will have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single 

series of cells can be determined as 

Eq. 31 

Eq. 32 
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1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑦
+

𝑛×𝛽1 − 𝑦(𝑥)

𝐾𝑇𝑐
+  

𝑛 − 𝑛×𝛽1

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛽1 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑐 + (𝑛 − 𝑛×𝛽1)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=√2×𝛼×𝑚×𝑛

𝑥=0

 

 

 

For Part 2: 

𝐾𝑃3 =
𝑚 − √2×𝛼×𝑚×𝑛

𝑛
× (

𝐾𝑇𝑐×𝐾𝑇

 𝛽1𝐾𝑇 + (1 −  𝛽1)𝐾𝑇𝑐
) 

 

The overall stiffness of the wall given by K = KP1 + KP2 

 

4.2.2 Damage patterns observed on the Flanges of the wall due to bi-directional loading  

As we know from the earlier case the wall is subjected to X direction loading first, hence we 

observe Type 3 damage patterns on the flanges, and once the wall is displaced to the maximum 

point in X direction, it is then loaded in the Y direction, hence we start observing Type 1 or Type 

2 (based on the position of the wall) damages over the already existing damages on the flanges. 

(As shown in the figures 41) 

 

Figure 41: Damage pattern observed in flanges due to change in direction of loading 

Eq. 33 

Eq. 34 

Eq. 35 
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The position of hα2 (i.e. height of the secondary damage zone of α2) can vary in three ways as 

shown in figure 42 

4.2.2(a): α1 triangle forming on the left and 𝜷 damage triangle on the right 

 

Figure 42: All possible damage cases in flanges observed  

 

Case 1:  hα1 > hα2 and hα2 < hβ1 
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Figure 43: Case 1 hα1 > hα2 and hα2 < hβ1 

The wall surface can be divided into five parts, and the overall stiffness is addition of the 

stiffness due to all the parts. 

             

Figure 43(a) Part 1  Figure 43(b): Part 4    Figure 43(c): Part 5 

Part 1: 

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑧3/𝑡𝑎𝑛𝜃1

𝑥=0

 

 where z3 = (
2×𝛼1×𝑚×𝑛

𝑚𝛼
) − (𝑛×𝛼2) and  𝑦(𝑥) = (

2×𝛼1×𝑚×𝑛

𝑚𝛼
) − 𝑥𝑡𝑎𝑛𝜃1 

Here 𝑡𝑎𝑛𝜃1 =  
2×𝛼1×𝑚×𝑛

𝑚𝛼
2 =  

ℎ𝛼1

𝑚𝛼
  

Part2: 

𝐾𝑃2 =
𝑚𝛼 − 𝑧3/𝑡𝑎𝑛𝜃1

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼2K𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

 

Part3:  

𝐾𝑃3 =
𝑚 − 𝑚𝛼 − 𝑚𝛽

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

𝛼2 𝐾𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

 

Eq. 36 

Eq. 37 

Eq. 38 
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Part4: 

 As you can see from Figures 43 and Figure 43(b), the y value keeps decreasing as we move 

from right to left. Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃2 

 

where the number of horizontal cells, x ranges from 0 to 𝑚𝛽 − 𝑧4/𝑡𝑎𝑛𝜃2 . In a vertical row of 

unit cells, y (𝑥) cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α2 – y (𝑥) ) cells will have a 

stiffness equal to 𝐾𝑇𝑦 and (n- n×α2) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a 

single series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼2 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼2

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃4 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼2 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼2)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥= 𝑚𝛽−𝑧4/𝑡𝑎𝑛𝜃2

𝑥=0

 

 where z4 = (
2×𝛽×𝑚×𝑛

𝑚𝛽
) − (𝑛×𝛼2) 

For Part5:  

KP5 = ∑
KT×KTc

[n − y(x)]KTc + y(x)KT

x=𝑧4/𝑡𝑎𝑛𝜃2

x=0

 

  

where z4 = (
2×𝛽×𝑚×𝑛

𝑚𝛽
) − (𝑛×𝛼2) and 𝑦(𝑥) = (

2×𝛽×𝑚×𝑛

𝑚𝛽
) − 𝑥𝑡𝑎𝑛𝜃2 

Here, 𝑡𝑎𝑛𝜃2 =
2×𝛽×𝑚×𝑛

𝑚𝛽
2  =  

ℎ𝛽

𝑚𝛽
  

Therefore, the overall stiffness of the wall surface  

(K) = KP1 + KP2 + KP3 + KP4 + KP5 

 

 

 

Eq. 39 

Eq. 40 

Eq. 41 
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Case 2: hα1 = hα2 and hα2 = hβ1 

 

Figure 44: Case 2 when hα1 = hα2 and hα2 = hβ 

For this case we divide the wall surface into 2 parts  

Part 1:  

𝐾𝑃1 =
𝑚 − 𝑚𝛽

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼2𝐾𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

Part 2:  

As you can see from Figures 44, the y value keeps decreasing as we move from right to left. 

Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃2 

 

where the number of horizontal cells, x ranges from 0 to 𝑚𝛽 .In a vertical row of unit cells, y (𝑥) 

cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α2 – y (𝑥) ) cells will have a stiffness equal to 𝐾𝑇𝑦 

and (n- n×α2) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single series of cells can 

be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼2 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼2

𝐾𝑇
 

Eq. 42 
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By simplifying the above equation, we get 

 

𝐾𝑃2 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼2 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼2)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=𝑚𝛽 

𝑥=0

 

 where 𝑡𝑎𝑛𝜃2 =
2×𝛽×𝑚×𝑛

𝑚𝛽
2  and 𝑦(𝑥) =  𝑛×𝛼2 − 𝑥𝑡𝑎𝑛𝜃2 

Therefore, the overall stiffness of the wall surface (K) = KP1 + KP2 

Case 3: hα1 < hα2 and hα2 > hβ1 

 

Figure 45: hα1 < hα2 and hα2 > hβ 

For this case, we divide the wall surface into two parts  

Part 1:  

𝐾𝑃2 =
𝑚 − 𝑚𝛽

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼2K𝑇 + (1 − 𝛼2)𝐾𝑇𝑦
) 

Part 2:  

As you can see from Figures 45, the y value keeps decreasing as we move from right to left. 

Hence y value in terms of x can be written as follows 

Eq. 43 

Eq. 44 

Eq. 45 
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𝑦(𝑥) =
2×𝛽×𝑚×𝑛

𝑚𝛽
 − 𝑥tan𝜃2 

 

where the number of horizontal cells, x ranges from 0 to 𝑚𝛽 .In a vertical row of unit cells, y (𝑥) 

cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α2 – y (𝑥) ) cells will have a stiffness equal to 𝐾𝑇𝑦 

and (n- n×α2) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single series of cells can 

be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼2 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼2

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃3 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼2 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼2)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥=𝑚𝛽

𝑥=0

 

    𝑡𝑎𝑛𝜃2 =
2×𝛽×𝑚×𝑛

𝑚𝛽
2 =  

ℎ𝛽

𝑚𝛽
 

Therefore, the overall stiffness of the wall surface (K) = KP1 + KP2   

 

4.2.2(b): α1 triangle forming on the right and 𝜷 damage triangle on the left 

 

Figure 46: Possible damage cases in flanges observed 

Eq. 46 

Eq. 47 
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Case 1:  hα1 > hα2 and hα2 < hβ1 

 

Figure 47: Case 1: hα1 > hα2 and hα2 < hβ1 

The wall surface can be divided into five parts, and the overall stiffness is addition of the 

stiffness due to all parts. 

 

Figure 47(a) Part 1          Figure 47(b) Part 2    Figure 47(c) Part 5 
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Part 1: 

KP1 = ∑
KT×KTc

[n − y(x)]KTc + y(x)KT

x=𝑧3/𝑡𝑎𝑛𝜃1

x=0

 

  

Where z3 = (
2×𝛽×𝑚×𝑛

𝑚𝛽
) − (𝑛×𝛼2) and 𝑦(𝑥) = (

2×𝛽×𝑚×𝑛

𝑚𝛽
) − 𝑥𝑡𝑎𝑛𝜃1 

Here, 𝑡𝑎𝑛𝜃1 =
2×𝛽×𝑚×𝑛

𝑚𝛽
2  =  

ℎ𝛽

𝑚𝛽
  

Part 2: 

As you can see from Figures 47 and Figure 47(b), the y value keeps decreasing as we move from 

left to right. Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃1 

 

where the number of horizontal cells, x ranges from 0 to 𝑚𝛽 − 𝑧3/𝑡𝑎𝑛𝜃1 . In a vertical row of 

unit cells, y (𝑥) cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α2 – y (𝑥) ) cells will have a 

stiffness equal to 𝐾𝑇𝑦 and (n- n×α2) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a 

single series of cells can be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼2 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼2

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃2 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼2 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼2)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥= 𝑚𝛽−𝑧3/𝑡𝑎𝑛𝜃1

𝑥=0

 

 Where z3 = (
2×𝛽×𝑚×𝑛

𝑚𝛽
) − (𝑛×𝛼2) 

Part 3: 

𝐾𝑃3 =
𝑚 − 𝑚𝛼 − 𝑚𝛽

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

𝛼2 𝐾𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

 

 

 

Eq. 48 

Eq. 49 

Eq. 50 
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Part 4: 

𝐾𝑃4 =
𝑚𝛼 − 𝑧4/𝑡𝑎𝑛𝜃2

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼2K𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

Where z4 = (
2×𝛼1×𝑚×𝑛

𝑚𝛼
) − (𝑛×𝛼2) and 𝑡𝑎𝑛𝜃2 =  

2×𝛼1×𝑚×𝑛

𝑚𝛼
2 =  

ℎ𝛼1

𝑚𝛼
 

Part 5: 

𝐾𝑃5 = ∑
𝐾𝑇×𝐾𝑇𝑦

[𝑛 − 𝑦(𝑥)]𝐾𝑇𝑦 + 𝑦(𝑥)𝐾𝑇

𝑥=𝑧4/𝑡𝑎𝑛𝜃2

𝑥=0

 

 Where z4 = (
2×𝛼1×𝑚×𝑛

𝑚𝛼
) − (𝑛×𝛼2) and  𝑦(𝑥) = (

2×𝛼1×𝑚×𝑛

𝑚𝛼
) − 𝑥𝑡𝑎𝑛𝜃2 

Here 𝑡𝑎𝑛𝜃2 =  
2×𝛼1×𝑚×𝑛

𝑚𝛼
2 =  

ℎ𝛼1

𝑚𝛼
  

Therefore, the overall stiffness of the wall surface   

(K) = KP1 + KP2 + KP3 + KP4 + KP5 

 

Case 2: hα1 = hα2 and hα2 = hβ1  

 

Figure 48: Case 2 when hα1 = hα2 and hα2 = hβ  

Part 1: 

As you can see from Figures 48, the y value keeps decreasing as we move from left to right. 

Hence y value in terms of x can be written as follows 

Eq. 51 

Eq. 52 

Eq. 53 



www.manaraa.com

50 
 

 
 

𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃1 

 

where the number of horizontal cells, x ranges from 0 to 𝑚𝛽. In a vertical row of unit cells, y (𝑥) 

cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α2 – y (𝑥) ) cells will have a stiffness equal to 𝐾𝑇𝑦 

and (n- n×α2) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single series of cells can 

be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼2 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼2

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼2 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼2)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥= 𝑚𝛽

𝑥=0

 

Where 𝑡𝑎𝑛𝜃1 =
2×𝛽×𝑚×𝑛

𝑚𝛽
2  =  

ℎ𝛽

𝑚𝛽
 and 𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃1 

Part 2:  

𝐾𝑃1 =
𝑚 − 𝑚𝛽

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼2𝐾𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

Therefore, the overall stiffness of the wall surface  

(K) = KP1 + KP2   

Case 3: hα1 < hα2 and hα2 > hβ1 

 

Figure 49: hα1 < hα2 and hα2 > hβ 

Eq. 54 

Eq. 55 

Eq. 56 
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Part 1: 

As you can see from Figures 49, the y value keeps decreasing as we move from left to right. 

Hence y value in terms of x can be written as follows 

𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃1 

 

where the number of horizontal cells, x ranges from 0 to 𝑚𝛽. In a vertical row of unit cells, y (𝑥) 

cells will have a stiffness equal to 𝐾𝑇𝑐 and (n×α2 – y (𝑥) ) cells will have a stiffness equal to 𝐾𝑇𝑦 

and (n- n×α2) cells have a stiffness equal to 𝐾𝑇. Hence the stiffness for a single series of cells can 

be determined as 

1

𝐾
=  

𝑦(𝑥)

𝐾𝑇𝑐
+

𝑛×𝛼2 − 𝑦(𝑥)

𝐾𝑇𝑦
+  

𝑛 − 𝑛×𝛼2

𝐾𝑇
 

By simplifying the above equation, we get 

𝐾𝑃1 = ∑
𝐾𝑇×𝐾𝑇𝑦×𝐾𝑇𝑐

[𝑛×𝛼2 − 𝑦(𝑥)]𝐾𝑇𝐾𝑇𝑐 + 𝑦(𝑥)𝐾𝑇𝐾𝑇𝑦 + (𝑛 − 𝑛×𝛼2)𝐾𝑇𝑦𝐾𝑇𝑐

𝑥= 𝑚𝛽

𝑥=0

 

Where 𝑡𝑎𝑛𝜃1 =
2×𝛽×𝑚×𝑛

𝑚𝛽
2  =  

ℎ𝛽

𝑚𝛽
 and 𝑦(𝑥) =  𝑛×𝛼2 − 𝑥tan𝜃1 

Part 2:  

𝐾𝑃1 =
𝑚 − 𝑚𝛽

𝑛
× (

𝐾𝑇𝑦×𝐾𝑇

 𝛼2𝐾𝑇 + (1 −  𝛼2)𝐾𝑇𝑦
) 

Therefore, the overall stiffness of the wall surface  

(K) = KP1 + KP2   

 

 

 

 

 

 

Eq. 57 

Eq. 58 

Eq. 59 
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CHAPTER 5 

VALIDATION AND PARAMETRIC STUDY 

5.1 Validation of the spring molecule for unidirectional loading. 

The overall stiffness of the wall is assumed to be the addition of stiffness of each wall surface 

(i.e., one Web and 2 Flanges) at that particular drift obtained from the equations derived from 

Chapter 4. 

𝐾𝑊𝑎𝑙𝑙 =  𝐾𝑤𝑒𝑏 + 𝐾𝐹𝑙𝑎𝑛𝑔𝑒 + 𝐾𝐹𝑙𝑎𝑛𝑔𝑒 

𝐾𝑂_𝑊𝑎𝑙𝑙 =  𝐾𝑂_𝑤𝑒𝑏 + 𝐾𝑂_𝐹𝑙𝑎𝑛𝑔𝑒 + 𝐾𝑂_𝐹𝑙𝑎𝑛𝑔𝑒  

Note: In reality, we do not have steel in each and every cell of the spring cell molecule. Hence, 

the Ks of the steel has been reduced by multiplying it by the vertical steel reinforcement ratio (ρ) 

which is equal to 0.0056 [13]. The yield strength of rebars, compressive strength of concrete and 

other material properties were obtained from Ile [13]. 

5.1.1 Determining the 𝑲𝑾𝒂𝒍𝒍 with increasing drift ratios for Wall1(i.e. Y-direction loading) 

XZ Plane: we observe Type 1 and Type 2 damages on XZ plane of Wall1 based on position of  

wall under Y direction loading. The observed α and β values with increasing drift ratio’s is 

shown in Figure 19. Using these values in equations 4 and 6 respectively, 𝐾𝑋𝑍 (stiffness of XZ 

plane) with increasing drift ratios under tension and compression can be computed. 

YZ Plane: We observe Type 3 damage on YZ plane of Wall1. The observed α, β, mα and mβ 

values is shown in figures 20(a),20(b), 21 and 22. Using these values in equations 7, 8, 9, 10 and 

11. 𝐾𝑌𝑍 (stiffness of YZ plane) with increasing drift ratios under tension and compression can be 

computed. The 𝐾𝑊𝑎𝑙𝑙 is equal to 𝐾𝑋𝑍 + 𝐾𝑋𝑍 + 𝐾𝑌𝑍 at each drift ratio point.  

The initial stiffness for each surface (XZ and YZ plane) is determined Eq.2. The total initial 

stiffness is equal to 𝐾𝑂_𝑊𝑎𝑙𝑙 =  𝐾𝑂_𝑌𝑍 + 𝐾𝑂_𝑋𝑍 + 𝐾𝑂_𝑋𝑍   

Ratio between 𝐾𝑊𝑎𝑙𝑙 and 𝐾𝑂_𝑊𝑎𝑙𝑙 of Wall1 is obtained with increasing drift ratio and a graph is 

ploted as shown in Figure 50. Comparision has been made between the experimental stiffness 

reduction ratio and computed value for Wall 1 as seen in figure 50. The experimental stiffness 

reduction ratio was determined using the force displacement graph obtained from VEEL. By 
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determing the slope between two consecutive peeak displacements in the FD curve we get the 

stiffness value and when it is divided with the initial stiffness we get stiffness reduction factor 

experimentally.  

5.1.2 Determing the 𝑲𝑾𝒂𝒍𝒍 with increasing drift ratios for Wall2 (i.e. X-direction loading) 

YZ Plane: We onserve Type 1 and Type 2 damages on YZ plane of Wall2 based on the position 

of wall during X direction loading and the observed α and β values with increasing drift ratio’s is 

shown in Figure 25. Using these values in equations 4 and 6 respectively, 𝐾𝑌𝑍 (stiffness of YZ 

plane) with increasing drift ratios under tension and compression can be computed. 

XZ Plane: We observe Type 3 damage on this surface. The observed α, β, mα and mβ values is 

shown in figures 23(a),23(b), and 24. Using these values in equations 7, 8, 9, 10 and 11. 𝐾𝑋𝑍 

(stiffness of XZ plane) with increasing drift ratios under tension and compression can be 

computed. The 𝐾𝑊𝑎𝑙𝑙 is equal to 𝐾𝑋𝑍 + 𝐾𝑋𝑍 + 𝐾𝑌𝑍 at each drift ratio point 

Similar to Wall1, The initial stiffness for each surface (XZ and YZ plane) is determined Eq.2. 

The total initial stiffness is equal to 𝐾𝑂_𝑊𝑎𝑙𝑙 =  𝐾𝑂_𝑌𝑍 + 𝐾𝑂_𝑋𝑍 + 𝐾𝑂_𝑋𝑍  

Ratio between 𝐾𝑊𝑎𝑙𝑙 and 𝐾𝑂_𝑊𝑎𝑙𝑙 of Wall2  is obtained with increasing drift ratio and a graph is 

ploted as shown in Figure 51. Comparision has been made between the experimental stiffness 

reduction ratio and computed value for Wall 2 as seen in figure 51. 

Looking into the two graphs, we can conclude that the spring molecule forrmulae is a reasonable 

model for computing the stiffness reduction factor for non-rectangular shear walls under Uni- 

and Bi-directional loading. 
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Wall 1  

       

Figure 50: Comparing the experimental and computed stiffness reduction ratio for Wall1 under tension 

(Left) and compression (Right) 

f) Wall 2 

        

Figure 51: Comparing the experimental and computed stiffness reduction for Wall2 under tension (Left) 

and compression (Right) 

From the two comparisons, we see that there is a slight deviation between the experimental and 

computed stiffness reduction ratio for Wall 2 (X- direction loading) under tension as well as 

compression. This deviation may be associated with the unsymmetrical loading direction of the 
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wall which the spring molecule cannot capture. This spring model is based on several 

assumptions; hence it needs to be developed further more to capture the stiffness reduction 

exactly.  

5.2 Parametric Study: 

To determine the Optimal Setting 

A U-shaped wall under biaxial loading, predicts lower capacity in both the directions (X and Y 

direction) compared to its ability under one direction as shown in figure 9(a) and 9(b). In our 

case, the U-shaped wall has been subjected to a butterfly pattern loading as illustrated in figure 7 

and 8. For simplicity, we will be focusing our discussion only on the first nine steps of the 

loading pattern i.e. The U-shaped Wall is first loaded in the X direction up to a displacement 

value of -4cm, now from that position the wall is then subjected to a Y-direction loading up to a 

displacement of 4cm. Using the observed α, β values under Uni-direction loading and the 

equations derived from above chapter 4.2. We tried to predict the secondary stiffness of the Wall 

and compare it to the experimental result obtained from VEEL simulation. 

To exactly predict the experimental secondary stiffness. A parametric study has been performed 

by varying the cell size ranging from 0.1mm to 10mm and the concrete stiffness reduction factor 

ranging from -0.000109 to -0.109322, which have been discussed in detail below 

5.2.1 Cell Size Parametric Study: 

 To determine the optimal setting for determining the secondary stiffness. The cell size has been 

varied as 0.1mm, 0.25mm, 0.5mm, 1mm, 5mm and 10mm. The secondary stiffness obtained for 

each of the cases is shown in Table 4 and Figure 52. The comparison graphs have been divided 

into two categories because as we can see from the table, the stiffness value varies from x 10^6 

to x 10^9. Due to this high range of values, it is quite difficult to plot it on a single graph. Cell 

sizes from 0.1mm to 0.5mm were plotted in one graph and the other cases 1mm, 5mm, and 

10mm are plotted in other cases. 
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Table 4: Cell Size Parametric Study                         Displacement (m) 

  

 

 

 

 

 

       

Figure 52: Cell Size Parametric Study Comparison  

From Figure 52, we can conclude that the model is mesh sensitive and as the cell size increases 

the secondary stiffness value increases. We can also conclude that the cell size should be less 

than 1 for better results as can be seen from the two graphs above, when the cell size increases 

from 0.1 to 0.5mm there is only slight increase in the secondary stiffness, but when we increase 

it from 1mm to 10mm the stiffness increase is enormous. 

 

 

 

Cell Size (mm) 0.01 0.02 0.03 0.04 

0.1 
2.17E+07 1.20E+07 8.59E+06 6.14E+06 

0.25 
2.79E+07 1.63E+07 1.24E+07 9.58E+06 

0.5 
4.00E+07 2.07E+07 1.52E+07 1.18E+07 

1 
5.45E+08 3.40E+08 2.08E+08 1.37E+07 

5 
4.04E+09 2.85E+09 1.97E+08 1.65E+08 

10 
9.32E+09 7.77E+09 6.85E+09 5.98E+09 
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5.2.2 Concrete stiffness reduction factor (d) parametric study 

The concrete stiffness reduction factor (d) determined using the Kent and Park Model as shown 

in chapter 3, is equal to -0.109322, to find the optimal setting for determining secondary 

stiffness, the d value changed from -0.000109322 to -0.109322. The results obtained are 

summarized in Table 5 and Figure 53. 

Table 5: Concrete Stiffness reduction factor parametric study 

d value 0.01 0.02 0.03 0.04 

-1.09322E-04 1.52E+07 9.44E+06 7.94E+06 5.53E+06 

-1.09322E-03 2.79E+07 1.63E+07 1.24E+07 9.58E+06 

-1.09322E-02 1.51E+08 9.37E+07 6.69E+07 5.06E+07 

-1.03922E-01 1.28E+09 8.38E+08 3.64E+08 1.55E+08 

 

       

Figure 53: Concrete Stiffness Reduction factor (d) – parametric study 

From the two parametric studies, the optimal setting for this particular case is a d value equal to -

0.00109322 and a cell size equal to 0.25mm 
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5.3 Validation for Uni-directional loading 

Using the optimal setting determined earlier, validation for stiffness reduction in one-directional 

loading was done, and the results are shown in figure 54 and 55 

5.3.1 Wall 1: 

 

Figure 54: Comparison of Wall1 Stiffness reduction using the optimal setting 

2 

5.3.2 Wall2:  

 

Figure 55:  Comparison of Wall2 Stiffness reduction using optimal setting 
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From the Figures 54 and 55, we can conclude the optimal setting determined for bi-axial loading, 

satisfies very well with one directional loading. The overall shape and value for Wall1 under 

tension coincides very well with the experimental result, whereas in Case2 the results deviated 

from each other, one plausible reason for this deviation is that the Wall2 is loaded in X direction 

which is unsymmetrical loading. The spring model is not able to consider the unsymmetrical 

loading. Hence further research is required on the spring model to develop a realistic approach to 

tackling the overlapping damage states so as to predict the realistic behavior of non-rectangular 

shear walls. From the satisfactory unidirectional loading results, an attempt is made to extend the 

spring molecule model to bidirectional loading using the same optimal setting used for 

unidirectional loading which is discussed in the next chapter. 

CONCLUSION 

In an attempt to find a unified stiffness (damage) reduction factor for U-shaped walls under bi-

directional loading, this study developed equations based on different damage states that are 

plausible on the web and flanges of the U-shaped wall. A novel technique of spring molecule 

model has been developed which divides the rectangular surface into m by n cells aligned 

vertically. Each cell consisting of a nonlinear spring and a nonlinear compressive concrete spring 

with a compression-only gap. The results show that the equations are reasonably good to monitor 

the secondary stiffness of U-shaped walls under biaxial loading. Parametric study on the cell size 

and concrete stiffness reduction factor has been done to determine the optimal setting. The spring 

model seems to be a good starting point to consider secondary stiffness reductions for other non-

rectangle shape walls like L- and T-shaped walls. The equations coincide well with experimental 

results under uniaxial loads. Also, an application to a U-shaped wall under bi-directional loading 

showed a promising possibility of the developed method. 

FUTURE RESEARCH 

This spring molecule model assumption promises to be a reasonable starting point to determine 

stiffness reduction factor quickly for other complex shape walls like the T-, L-, or Box shaped 

walls. Results call for further validations and sophistications against various experimental 

researches on complex wall subjected to multi-directional irregular loading conditions. 
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